The Lefschetz Property for Componentwise Linear Ideals and Gotzmann Ideals
نویسنده
چکیده
For standard graded Artinian K-algebras defined by componentwise linear ideals and Gotzmann ideals, we give conditions for the weak Lefschetz property in terms of numerical invariants of the defining ideals.
منابع مشابه
IDEALS WITH (d1, . . . , dm)-LINEAR QUOTIENTS
In this paper, we introduce the class of ideals with $(d_1,ldots,d_m)$-linear quotients generalizing the class of ideals with linear quotients. Under suitable conditions we control the numerical invariants of a minimal free resolution of ideals with $(d_1,ldots,d_m)$-linear quotients. In particular we show that their first module of syzygies is a componentwise linear module.
متن کاملCones Related to the Lefschetz Properties
In [17] the authors highlight the link between rational varieties satisfying a Laplace equation and artinian ideals that fail the Weak Lefschetz property. Continuing their work we extend this link to the more general situation of artinian ideals failing the Strong Lefschetz Property. We characterize the failure of SLP (that includes WLP) by the existence of special singular hypersurfaces (cones...
متن کاملThe Hilbert functions which force the Weak Lefschetz Property
The purpose of this note is to characterize the finite Hilbert functions which force all of their artinian algebras to enjoy the Weak Lefschetz Property (WLP). Curiously, they turn out to be exactly those (characterized by Wiebe in [Wi]) whose Gotzmann ideals have the WLP. This implies that, if a Gotzmann ideal has the WLP, then all algebras with the same Hilbert function (and hence lower Betti...
متن کامل5 S ep 2 00 6 The Hilbert functions which force the Weak Lefschetz Property
The purpose of this note is to characterize the finite Hilbert functions which force all of their artinian algebras to enjoy the Weak Lefschetz Property (WLP). Curiously, they turn out to be exactly those (characterized by Wiebe in [W i]) whose Gotzmann ideals have the WLP. This implies that, if a Gotzmann ideal has the WLP, then all algebras with the same Hilbert function (and hence lower Bett...
متن کاملSe p 20 06 The Hilbert functions which force the Weak Lefschetz Property
The purpose of this note is to characterize the finite Hilbert functions which force all of their artinian algebras to enjoy the Weak Lefschetz Property (WLP). Curiously, they turn out to be exactly those (characterized by Wiebe in [W i]) whose Gotzmann ideals have the WLP. This implies that, if a Gotzmann ideal has the WLP, then all algebras with the same Hilbert function (and hence lower Bett...
متن کامل